Doping

Innehåller NO-Xplode någon dopingklassad substans?

NO-Xplode innehåller glycerol, även känt som glycerin, vilket i extrema mängder räknas som doping. NO-Xplode är dock fortfarande ett fullt legitimt kosttillskott vid såväl träning som tävling så länge man håller sig till något så när mänskliga doser då innehållet av glycerol inte är särskilt högt. Så vitt vi vet så har inte ens World Anti-Doping Agency (WADA) fastställt ett tröskelvärde för glycerol. Se WADAs lista över dopingklassade substanser för mer information.

Glycerol binder till sig vatten i blodet och ökar alltså blodvolymen. Av denna anledning räknas den som en så kallad “masking agent”. Det kan alltså användas till att dölja höga koncentrationer av andra dopingklassade ämnen i blodet. Glycerol har även i en studie visat sig vara prestationshöjande för elitcyklister.

Glycerol finns även i vanlig mat och äter man mycket fett så kommer man att ha förhöjda nivåer av glycerol i blodet. Glycerol frisätts också när kroppen förbränner sitt eget fett. Levern förbränner glycerol som även elimineras genom urinen. Så länge man håller sig till rekommenderad dosering av NO-Xplode så finns det ingen risk att åka dit i någon dopingkontroll. Antagligen kan man ta dubbla den rekommenderade maxdosen utan att riskera något. Alla människor har glycerol i urinen, vare sig de tar kosttillskott eller ej. No-Xplode i rimliga mängder gör ingen större skillnad.

Vilka bör se upp med sitt glycerolintag?

Bruk av glycerol är fullt tillåtet för vanliga tränande. Det är bara tävlande personer i testade idrotter som bör vara försikta med mängden glycerol de får i sig. NO-Xplode i normala doser är som sagt inget som tävlande behöver oroa sig för.

Hur lång tid tar det innan glycerol försvinner ur kroppen?

Glycerol förbränns av levern och elimineras även genom urinen. Mängden i blodet återgår till normal nivå några timmar efter intag. Den exakta tiden det tar är dosberoende. I ett dopingtest kontrollerar man mängden i urinen.

Studier

Pre-exercise glycerol hydration improves cycling endurance time

The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.

Montner P, Stark DM, Riedesel ML, Murata G, Robergs R, Timms M, Chick TW. Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med. 1996 Jan;17(1):27-33.

Quantitative analysis of urinary glycerol levels for doping control purposes using gas chromatography-mass spectrometry

The administration of glycerol to endurance athletes results in an increased fluid retention and improved performance, particularly under hot and humid conditions. Consequently, glycerol is considered relevant for sports drug testing and methods for its detection in urine specimens are required. A major issue in this regard is the natural occurrence of trace amounts of glycerol in human urine, which necessitates a quantitative analysis and the determination of normal urinary glycerol levels under various sporting conditions. A quantitative method was established using a gas chromatography/isotope-dilution mass spectrometry-based approach that was validated with regard to lower limit of detection (0.3 microg mL(-1)), lower limit of quantification (0.9 microg mL(-1)), specificity, linearity (1.0-98.0 microg mL(-1)), intraday and interday precision (<20% at 2.4, 24.1 and 48.2 microg mL(-1)) as well as accuracy (92-110%). Sample aliquots of 20 microL were enriched with five-fold deuterated glycerol, dried and derivatised using N-methyl-trimethylsilyltrifluoroacetamide (MSTFA) before analysis. The established method was applied to a total of 1039 doping control samples covering various sport disciplines (349 endurance samples, 286 strength sport samples, 325 game sport samples and 79 other samples) in- and out-of-competition, which provided quantitative information about the glycerol content commonly observed in elite athletes' urine samples. About 85% of all specimens yielded glycerol concentrations < 20.0 microg mL(-1) and few reached values up to 132.6 microg mL(-1). One further sample, however, was found to contain 2690 microg mL(-1), which might indicate the misuse of glycerol, but no threshold for urinary glycerol concentrations has been established yet due to the lack of substantial data. Based on the results obtained from the studied reference population, a threshold for glycerol levels in urine set at 200 microg mL(-1) is suggested, which provides a tool to doping control laboratories to test for the misuse of this agent in elite and amateur sport. Thevis M, Guddat S, Flenker U, Schänzer W. Quantitative analysis of urinary glycerol levels for doping control purposes using gas chromatography-mass spectrometry. Eur J Mass Spectrom (Chichester, Eng). 2008;14(3):117-25.